oILCT
—=

RPLIDAR
Low Cost 360 degree 2D Laser Scanner (LIDAR) System
Introduction to Standard SDK

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

Contents:

1o INTrOAUCTION ettt et sttt st e e 2
SDK OrQanIZAtION weeeeeeeeeeeieeeeeieiee e ettt e e et e e e ettt e e e sttt e e s et e e e s eabaeeeeeeaees 2
Build SDK and Demo ApPlICAtIONSeeeeeieiiieee ettt 3
CrOSS COMPIIE 1rvvreteeeeeeeeeeiititeeeeeeeeeeseettrreeeeeeeeeeessasabrreeeeaeesessssssssseeaaaeeseesnnnes 6
2. DEMO APPIICATIONS ceeieiiriirieeeeeeeeeeciiitt et e e e e e e eesrirbtreeeeeeeeeessanessraebeeeeeeesnannes 7
oL T [T o] TR ST UTR R T 7
SIMPIE_GrabbEr e 8
G 1RSI e =] o] o 1= S TS UUPUPRURPPP ?
3. SDK Usage and Development GUIdE.......uueiiiiiiiiieiiniiieee e 11
ASSUMPTION ettt ettt e e e e e e sttt e e e e et e e bbbt b et e eeeeeeeesaabbbbeeeeeeeeeas 11
DK USAGE ¢ttt ettt e e e nnnnne 11
RUNTIME CONSISTENCY wetttttiitiiitiiitieieteeiataeteeeeeeeeeeeeeeeeeeeeeeeeeaeeseeeeeeeeaeeeeeeaeeeeeenennes 11
SDK HEAAETS ettt ettt ettt sttt e sttt et e s esieeeeeas 12
SDK Initialization and Terminationeeeeeeeeeeeeeeriiiee et 12
Connecting to an RPLIDAR ...ttt 13
Measurement Scan and Data ACGUINNG veeeeueeieeeeeiiieeeeeeeeeeeeeireeeeeeieeee e e 13
Retrieving other information of an RPLIDARccoveiiiiieieiieee e 15
4. REVISION HISTOMY tittitiiiiiiiiiitt ettt ettt e e et e e e e e e e e s aeeteeeeeeeees 16

1/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Introduction to Standard SDK

H Low Cost 360 degree 2D Laser Scanner (LIDAR) System

1. Introduction

This document introduces RPLIDAR standard SDK. The SDK can be used in both
Windows, Linux and MacOS (10.x) environment by using Microsoft Visual C++ 2008,
2010 and Makefile.

I SDK Organization

The RPLIDAR standard SDK organized as bellow:

4 | sdk
4| app
&> | frame_grabber

| simple_grabber

| ultra simple
b . obj
4 | output
| Linux
4 | win32
| Debug
L Rﬂ:e
4 | sdk
| include
N
4 | workspaces
b ve9
4 | vc10
| frame_grabber

| rplidar_driver
| simple_grabber
b} ultra_simple

The workspaces directory contains VS project files for SDK and demo applications.

The sdk directory contains the source code of RPLIDAR driver. The include folder
contains all the header files required for applications use SDK. The src folder is the

implementation of the SDK.
RoboPeak provides the following demo applications in the app directory:
® ultra_simple

An ultra-simple command line application demonstrates the simplest way to connect

to an RPLIDAR device and continuously fetching the scan data and outputting the
2/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

data to the console.

Users can quickly integrate RPLIDAR to their existing system based on this demo

application.
® Simple_grabber

A command line grab application. Each execution will grab two round of laser data

and show as histogram.
® Frame_grabber

A win32 GUI grab application. When press start scan button, it will start scan

continuously and show the data in the UL

After compilation, there will be two more folders in the SDK: obj and output. Output
folder contains generated SDK static library (lib or .a) and demo application
executable files (exe or elf). obj folder contains intermediate files generated during

compilation.

I Build SDK and Demo Applications

If you're developing under Windows, please open VS solution file under
workspaces\vcl0: sdk_and_demo.sin. It has included SDK project and all demo

application projects.

3/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

fiew Project

G- E- S a6

rplidar_driver.h 3 ElGETA rplidar |

1} rpustandalonesrplidar vl

B e e R T R e B e e

Jebug camn 00ls ;llrl'—, e est Analyze Vindow Help |
R o I || o R = = =)= 5 |
20PR e E A,

E Solution 'sdk_and_dema’ (2 pre ~
4 7 rplidar_driver
I 5 External Dependencies
4 7 sdk
4 [Z include
[n] rplidar.h
rplidar_cmd.h
rplidar_driver.h
[n] rplidar_protocalh
[1] rptypes.h
4 & src
4 [arch
4 [z win32
[n] arch_win32.
€4 net_serial.cy
net_serial.h
¢+ timer.cpp
[n] timer.h
4 [hal
abs_rxtxh
utilh
¢ rplidar_driver.cpp

@000 D U1 g R

m rplidar_driver_seri
sdkcommon.h

F simple_grabber

I A External Dependencies il

B/*
* RoboPeak LIDAR System
Driver Interface

Copyright 2089 - 2013 RoboPeak Team
http://www.robopeak.com

#pragma once

F#1fndef __cplusplus
| #error "The RPlidar SDK requires a C++ con
#endif

=inamespace rp { npmespace standalone{ nams:

Fclass RPlidarDriver {
| public:
B enum {
DEFAULT_TIMECUT = 2000, //2%
}.

El enum {
DRIVER_TYPE_SERIALPORT = 6x0,

+

public:
static RPlidarDriver * CreateDriver(_t
static void DisposeDriver(RPlidarDrive

public:
virtual u_result connect(const char *
virtual void disconnect() = 8;:
virtual bool isConnected() = 0:

#include "sdkcommon.h"
#include "hal/abs_rxtx.h”
#include “rplidar_driver serial.h”

=inamespace rp { namespace standalone{

// Factory Impl
EIRPlidarDriver * RPlidarDriver::Creat
{
switch (drivertype) {
case DRIVER TYPE_SERIALPORT:
return new RPlidarDriverSerl
default:
return NULL;
H
H

=lvoid RPlidarDriver::DisposeDriver(RP

delete drv:

// Serial Driver Impl

=IRPlidarDriverSerialImpl: :RPlidarDriv
: _isConnected(false)

i
_rxtx = rp::hal::serial_rxtx::Cr

Now, you can use VS to build SDK and demo applications easily. Depends on your
build configure. The generated binary can be found under output\win32\Release or

output\win32\Debug.

If you're developing under Linux or MacOS, just type "make” under the root of SDK

directory. It will do Release build by default, you can also typing “make DEBUG=1" to

do Debug build. The generated binary can be found under the following folders:

Linux

® output\Linux\Release
® output\Linux\Debug.

MacOS

® output\Darwin\Release
® output\Darwin\Debug.

4/16

Copyright 2009-2014 RoboPeak

http://www.RoboPeak.com

ling@Ling-VM: ~/rplidar_sdk

ling@Ling-VM:~/rplidar_sdk$ make
make[1]: Entering directory " /home/ling/rplidar_sdk/sdk'
CXX srcfrplidar_driver.cpp
srcfhal/thread.cpp
srcfarch/linux/net_serial.cpp
srcfarch/linux/timer.cpp
-p “dirname fhome/ling/rplidar_sdk/output/Linux/Release/librplidar_sdk.a"
< rplidar_driver.o->librplidar_sdk.a
< thread.o->librplidar_sdk.a
< net_serial.o->librplidar_sdk.a
< timer.o->librplidar_sdk.a
: Leaving directory "/home/ling/rplidar_sdk/sdk'
: Entering directory °/home/ling/rplidar_sdk/app'
: Entering directory °/home/ling/rplidar_sdk/app/simple_grabber'
main.cpp
make[2]: Circular /home/ling/rplidar_sdk/output/Linux/Release/librplidar_sdk.a <- /hom
e/ling/rplidar_sdk/output/Linux/Release/librplidar_sdk.a dependency dropped.
mkdir -p “dirname /home/ling/rplidar_sdk/output/Linux/Release/librplidar_sdk.a"
pack main.o->librplidar_sdk.a
/home/1ling/rplidar_sdk/output/Linux/Release/simple_grabber
: Leaving directory " /home/ling/rplidar_sdk/app/simple_grabber"'
. : Leaving directory "/home/ling/rplidar_sdk/app'
ling@Ling-VM:~/rplidar_sdk$ ‘

public — bash — 80x20
bash

Shikais-MacBook-Pro:public csk$ make
src/rplidar_driver.cpp
src/hal/thread.cpp
src/arch/mac05/net_serial.cpp
srcfarch/mac05/timer.cpp
-p ‘dirname fUsers/cskfsrc/gitpool/rpnew/applet/rplidar/software/public/ou
tput/Darwin/Release/librplidar_sdk.a’
pack rplidar_driver.o->librplidar_sdk.a
pack thread.o->librplidar_sdk.a
pack net_serial.o-»librplidar_sdk.a
pack timer.o->librplidar_sdk.a
CXX main.cpp
LD fUsersfcsk/src/gitpool/rpnew/applet/rplidar/software/public/output/Darwin/
Release/simple_grabber
CXX main.cpp
LD fUsers/csk/srcfgitpool/rpnewfapplet/rplidar/software/public/output/Darwin/
Releasefultra_simple
Shikais-MacBook-Pro:public csk$

5/16

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

IQO$Commm

The SDK build system allows you to generate binaries which run on another
platform/system using the cross-compiling feature.

NOTICE: this feature only works with Make build system.

The cross compile process can be triggered by invoking the cross_compile.sh script
under the SDK root folder. The common usage is:

CROSS_COMPILE_PREFIX=<COMPILE_PREFIX> ./cross_compile.sh

e.g. CROSS_COMPILE_PREFIX=arm-linux-gnueabihf ./cross_compile.sh

6/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

2.

Rev. 3

Demo Applications

ultra_simple

The demo application simply connects to an RPLIDAR device and outputs the scan

data to the console:

(@csk@ubuntu:/media/data—60/9it_pool/rpnew/applet/rplidar/s... = || B | &3

4.41 Dist: .

Dist: 00000.

Dist: 00278.

Dist: 00276.

Dist: 00000.

Dist: 00305.

Dist: 00314.

Dist: 00315.

Dist: 00329.

Dist: 00330.

Dist: 00328.

Dist: 00329.

Dist: 00000.

Dist: 00397.

Dist: 0000O.

Dist: 00000.

Dist: 00241.

Dist: 00208.

Dist: 00214.

Dist: 00217.

Dist: 00219.

Dist: 00222.

Dist: 00227.

: .72 Dist: 00000.
: 0.22 Dist: 00000.00 Q:
: 1.59 Dist: 00000.00 Q:
: 3.00 Dist: 00000.00 Q:
: 4.41 Dist: 00000.00 Q:

OO0 NOOMOONNOOODONWoOm

[ofoYoYo¥oFoFoFFeFeloleleloPoloFo¥olo¥o¥oNoFola]
[Qe
R

(<]

Steps:

1) Connect RPLIDAR to pc using provided USB cable. (USB to serial chip

embedded in RPLIDAR development kit)

2) Start application use the command:

® Windows

ultra_simple <com_port>

Note: if the com number is larger than 9, e.g. com1l, then you should start

application use command like this: ultra_grabber \\.\com11

7/16

file://./com11

Rev. 3

® Linux

ultra_simple <tty device>

e.g. ultra_simple /dev/ttyUSBO.

® Linux

ultra_simple <usb tty device>

e.g. ultra_simple /dev/tty.SLAB_USBtoUART.

simple_grabber

This demo application will get RPLIDAR's serial number, firmware version and healthy
status. Then the demo app grabs two round of scan data and show the range data as

histogram in the command line mode. User can print all scan data if needed.

-
Di\csksoft\git_poolrp_new_for_test\git.robopeak.org\applet\rplidar\seftware\public\work... |i‘£‘i-J

RFLIDAR S-H: A12DD?C?EYSOFD?2C193A346293C2CD2
Firmuware Uer: 1.083

Hardware Rew: @

RPLidar health status : OK. (errorcode: B>
waiting for data...

PEEEEE

8/16

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

1) Connect RPLIDAR to pc using provided USB cable. (USB to serial chip

embedded in RPLIDAR development kit)
2) Start application use command: simple_grabber <com number>
® Windows
simple_grabber <com_port>

Note: if the com number is larger than 9, e.g. comll, then you should start

application use command like this: ultra_grabber \\.\com11
® Linux

simple_grabber <tty device>

e.g. ultra_simple /dev/ttyUSBO.

® Linux

simple_grabber <usb tty device>

e.g. ultra_simple /dev/tty.SLAB_USBtoUART.

I frame_grabber

This demo application can show real-time laser scan data in the GUI with 0-360

degree environment range data. Note, this demo application only has win32 version.

9/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

file://./com11

Rev. 3

P [SCAN] Model: O FW: 1.09 HW: O Serial: SEE299F3C1E39BF2C3E30AFIAC303330 [E=RE=RC -~

File Command Optien View Help

6.6 Hz (397 RPM)

Ready

Steps:

1) Connect RPLIDAR to pc using provided USB cable. (USB to serial chip

embedded in RPLIDAR development kit)

2) Choose correct com port number through com port selection dialog.

3) Press start scan button (marked in red in the figure above) to start.

10/ 16

Introduction to Standard SDK

H Low Cost 360 degree 2D Laser Scanner (LIDAR) System

3. SDK Usage and Development Guide

I Assumption

This document assume developer has some knowledge about C++ development.

We strongly recommend developer understanding RPLIDAR's communication

protocol and working mode before staring develop use RPLIDAR SDK..

I SDK usage

RPLIDAR standard SDK provided with static library to facility develop intergrading SDK
into their own project. It's also possible to build SDK as dynamic library by

changing project configurations.

When develop with RPLIDAR SDK, you only need to include SDK's external header files
(under sdk\include) into your source code and link your application with SDK'’s static

library (rplidar_driver.lib or rplidar_driver.a).
For VS developer, you can also include SDK’s VC project into your solution.

For Linux developer, please refer to simple_grabber’s Makefile.

I Runtime consistency

For windows developer: the SDK static library uses VC10 MD C runtime library. If your
project used different C runtime library may leads to compilation failure or

unpredictable behavior. Then please change SDK settings accordingly.

11/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Introduction to Standard SDK

H Low Cost 360 degree 2D Laser Scanner (LIDAR) System

I SDK Headers

® rplidar.h

Usually, you only need to include this file to get all functions of RPLIDAR SDK.

® rplidar_driver.h

This header defines class RPLidarDriver. Please refer to demo applications to

understand how to use it.

® rplidar_protocol.h

This header defines low-level data structures and constants for RPLIDAR protocol.

® rplidar_cmd.h

This header defines request/answer data structures and constants for RPLIDAR

protocol.

® rptypes.h

This header defines platform-independent data structures and constants.

I SDK Initialization and Termination

User programs are required to create an RPlidarDriver instance before communicating

with an RPLIDAR device. The following static function is used:

RPlidarDriver *RPlidarDriver::CreateDriver (_u32 drivertype)

Each RPlidarDriver instance is bind to only one RPLIDAR device at the same time. But
user programs can freely allocate arbitrary number of RPlidarDriver instances and

12/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Introduction to Standard SDK

H Low Cost 360 degree 2D Laser Scanner (LIDAR) System

make them communicates with multiple RPLIAR devices concurrently.

Once user programs finish operations, all previously created RPlidarDriver instances
should be released explicitly using the following static function in order to free system

memory.

RPlidarDriver: :DisposeDriver(RPlidarDriver * drv)

I Connecting to an RPLIDAR

After creating an RPlidarDriver instance, the user program should invoke the connect()
function firstly in order to open the serial port and make connection with the RPLIDAR
device. All RPLIDAR operations require a connection has been established between
the system and the RPLIDAR device.

u_result RPlidarDriver::connect(const char * port_path, _u32 baudrate, _u32 flag = 0)

The function returns RESULT_OK for success operation.

Once the user program finishes operation, it can call the disconnect() function to close

the connection and release the serial port device.

I Measurement Scan and Data Acquiring

The following functions are related to the measurement scan operation and help user

programs to acquire the measurement data:

Function Name Brief description

startScan() Request the RPLIDAR core to start measurement scan operation
and send out result data continuously

stop() Request the RPLIDAR core to stop the measurement scan
operation.

grabScanData() Grab a complete 360-degrees’ scan data sequence.

The user program should invoke the startScan() firstly to make the RPLIDAR core enter
measurement scan operation. Once the rotation speed of RPLIDAR core becomes

stable, RPLIDAR core will output the measurement scan data continuously.

13/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Introduction to Standard SDK

H Low Cost 360 degree 2D Laser Scanner (LIDAR) System

The startScan() function will start a background worker thread to receive the
measurement scan data sequence sent from RPLIDAR asynchronously. The received
data sequence is stored in the driver’s internal cache for the grabScanData() function

to fetch.

User programs can use the grabScanData() function to retrieve the scan data
sequence previously received and cached by the driver. This function always returns a
latest and complete 360-degrees’ measurement scan data sequence. After each
grabScanData() call, the internal data cache will be cleared to ensure the

grabScanData() won't get duplicated data.

In case a complete 360-degrees’ scan sequence hasn’t been available at the time
when grabScanData() is called, the function will wait until a complete scan data is
received by the driver or the given timeout duration is expired. User programs can

tune this timeout value to meet different application requirements.

Note: the startScan() and stop() functions don’t control the scanning motor of
the RPLIDAR directly. The host system should control the scanning motor to

rotate or stop via the PWM pin.

Please refer to the comments in the header files and the implementation of SDK demo

applications for details.

14 /16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

I Retrieving other information of an RPLIDAR

The user program can retrieve other information of an RPLIDAR via the following
functions. Please refer to the comments in the header files and the implementation of

SDK demo applications for details.

Function Name Brief description
getHealth() Get the healthy status of an RPLIDAR
getDevicelnfo() Retrieve the device information, e.g. serial number, firmware
verison etc, from and RPLIDAR
getFrequency() Calculate an RPLIDAR's scanning speed from a complete scan
sequence.
15/16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

Low Cost 360 degree 2D Laser Scanner (LIDAR) System

Introduction to Standard SDK

4. Revision History

Date Content

2013-3-5 Initial draft

2014-1-25 1. Translated into English

2. Add Linux support

2014-3-8 1. Added descriptions of the ultra_simple app

2. Added descriptions of the major SDK functions

2014-7-25 1. Added descriptions of MacOS usage

2. Added descriptions of cross-compiling feature

16 /16

Copyright 2009-2014 RoboPeak
http://www.RoboPeak.com

	1. Introduction
	SDK Organization
	Build SDK and Demo Applications
	Cross Compile

	2. Demo Applications
	ultra_simple
	Steps：

	simple_grabber
	Steps：

	frame_grabber
	Steps：

	3. SDK Usage and Development Guide
	Assumption
	SDK usage
	Runtime consistency
	SDK Headers
	 rplidar.h
	 rplidar_driver.h
	 rplidar_protocol.h
	 rplidar_cmd.h
	 rptypes.h

	SDK Initialization and Termination
	Connecting to an RPLIDAR
	Measurement Scan and Data Acquiring
	Retrieving other information of an RPLIDAR

	4. Revision History

